Partially ordered sets

Aryaman Maithani

Undergraduate
IIT Bombay
3rd October, 2019

Definition 1

A partially ordered set (or poset, for short) is a set P together with a binary relation \leq which satisfies the following three axioms:
(1) $\forall x \in P: x \leq x$,
(2) $\forall x, y \in P:(x \leq y \wedge y \leq x) \Longrightarrow x=y$, and
(3) $\forall x, y, z \in P:(x \leq y \wedge y \leq z) \Longrightarrow x \leq z$.

By abuse of notation, we shall often refer to P as a poset, instead of (P, \leq) if there's no confusion. We may also use \leq_{p} at times when there's a possibility of confusion. We say that elements x and y of P are comparable if either $x \leq y$ or $y \leq x$. The term partially refers to the fact that there may be elements in the poset that are not comparable.

More notations

We also define the following three notations:
(1) $x \geq y$ iff $y \leq x$,
(2) $x<y$ iff $x \leq y$ and $x \neq y$, and
(3) $x>y$ iff $y<x$.

We shall also concatenate things by writing $x \leq z \leq y$ to mean $x \leq z$ and $z \leq y$. We can extend this by concatenating more than three elements as well as using different operations such as $x \leq y<z \leq w$.

We shall also frequently use the following notation:
Let \mathbb{N} denote the set of positive integers.
For $n \in \mathbb{N}$, define $[n]:=\{k \in \mathbb{N}: k \leq n\}$.
That is, $[n]$ is the set of positive integers up to (and including) n.

Examples of posets

Here are some examples of posets. Let n be any positive integer.
(1) [n] with the usual ordering of integers is a poset. Moreover, any two elements are comparable.
(2) Let $2^{[n]}$ denote all the subsets of [$\left.n\right]$.

We can define an ordering on $2^{[n]}$ as: $A \leq B$ if $A \subset B$. As a poset, we shall denote this by B_{n}.
(3) Let S denote all the positive integer divisors of n.

Define an ordering on S as: $a \leq b$ if $a \mid b$. As a poset, we shall denote this by D_{n}.
(9) Let P denote the set of (set) partitions of [n].

Define an ordering on P as: $\pi \leq \sigma$ if every block of π is contained in a block of σ. As a poset, we shall denote this by Π_{n}.
As an example, let $n=5$. Take $\pi=[1][234][5]$ and $\sigma=[1][2345]$. Then, we have it that $\pi \leq \sigma$.
(3) In general, any collection of sets can be ordered by inclusion to form a poset.

Let P and Q be two posets.
An isomorphism is a map $\varphi: P \rightarrow Q$ such that φ is a bijection and

$$
x \leq_{P} y \Longleftrightarrow \varphi(x) \leq_{Q} \varphi(y) \text { for every } x \text { and } y \text { in } P .
$$

Two posets P and Q are said to be isomorphic if there exists an isomorphism from P to Q. We denote this by writing $P \cong Q$.

What this really means is that P and Q are identical in terms of their structure as a poset and the elements of P could simply be relabeled to give Q.

Definition 2 (Weak subposet)

By a weak subposet of P, we mean a subset Q of P together with a partial ordering of Q such that $x \leq_{Q} y \Longrightarrow x \leq_{Q} y$ for all x and y in Q.

If Q is a weak subposet of P and $Q=P$ as sets, then P is called a refinement of Q.

Definition 3 (Induced subposet)

By an induced subposet of P, we mean a subset Q of P together with a partial ordering of Q such that $x \leq_{Q} y \Longleftrightarrow x \leq_{Q} y$ for all x and y in Q.

Unless otherwise mentioned, by a subposet of P, we shall always mean an induced subposet.
If $|P|<\infty$, then there exist exactly $2^{|P|}$ induced subposets of P.

Definition 4

A special subposet of P is the (closed) interval $[x, y]=\{z \in P: x \leq z \leq y\}$ defined whenever $x \leq y$.

By definition, it should be clear that \emptyset is not an interval.
Also, note that $[x, x]=\{x\}$.

Definition 5 (Locally finite poset)

If every interval of P is finite, then P is called a locally finite poset.
Examples of locally finite posets are: $B_{n}, \mathbb{N}, \mathbb{Z}$.
Examples of non-locally finite posets are: $2^{\mathbb{N}}, \mathbb{R}, \mathbb{Q}$.
($2^{\mathbb{N}}$ denotes the power set of \mathbb{N} which is a poset when ordered by inclusion.)
($\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}$ have their usual ordering.)

Definition 6

A poset (P, \leq) is said to be finite if P is finite.
Every finite poset is locally finite but the converse is not true as we saw earlier in the case of \mathbb{Z}.

Definition 7 (Convex subposets)

We define a subposet Q of P to be convex if $y \in Q$ whenever $x<y<z$ and $x, z \in Q$.
Thus, an interval is always convex.

Definition 8 (Cover)

If $x, y \in P$, then we say that y covers x if $x<y$ and $\nexists z \in P$ such that $x<z<y$.
The above is equivalent to saying that $x<y$ and $[x, y]=\{x, y\}$.
A locally finite poset P is completely determined by its cover relations.

The Hasse diagram of a finite poset P is the graph whose vertices are the elements of P, whose edges are cover relations, and such that if $x<y$, then y is drawn "above" x.

Figure: Hasse Diagrams of [5], D_{12}, B_{3}, and Π_{3}

Note that given the same poset, one may make different looking Hasse diagrams. If two posets have the same Hasse diagram, then they are clearly isomorphic.

We say that P has a $\hat{0}$ if there exists an element $\hat{0} \in P$ such that $\hat{0} \leq x$ for all $x \in P$. Similarly, P has a $\hat{1}$ is there exists an element $\hat{1} \in P$ such that $x \leq \hat{1}$ for all $x \in P$. We denote by \hat{P} the poset obtained by adjoining a $\hat{0}$ and a $\hat{1}$ to P. This is regardless of whether or not P had a $\hat{0}$ or a $\hat{1}$ to begin with.
Note that $\hat{0}$ and $\hat{1}$ have to comparable with every element, by definition.

Figure: P and \hat{P}

Definition 9

We say that $x \in P$ is a minimal element if $y \leq x \Longrightarrow y=x$ for all $y \in P$.

Definition 10

We say that $x \in P$ is a maximal element if $y \geq x \Longrightarrow y=x$ for all $y \in P$.
Note that a poset may not have a minimal or a maximal element to begin with. Example - \mathbb{N}
Even if a minimal (or maximal) element exists, it need not be unique. Example $\{2,3\}$ regarded as a subposet of D_{6}. All the elements are minimal as well as maximal. The above example also illustrates that a minimal (maximal) element need not necessarily be $\hat{0}(\hat{1})$. This sort of behaviour is precisely due to the fact that two elements may not be comparable.

Definition 11

A chain (or totally ordered set) is a poset in which any two elements are comparable.

Definition 12

A subset C of P is called a chain if C is a chain when regarded as a subposet of P.

Definition 13

A chain C of P is called saturated (or unrefinable) if there does not exist $z \in P \backslash C$ such that $x<z<y$ for some $x, y \in C$ and $C \cup\{z\}$ is still a chain.

Definition 14

A chain C of P is called maximal if there does not exist $z \in P \backslash C$ such that $C \cup\{z\}$ is still a chain.

Consider $P=D_{30}$ and the following subsets of P :
(1) $C_{1}=\{1,15,30\} . C_{1}$ is a chain but not saturated as $1<5<15$ and $C_{1} \cup\{5\}$ is still a chain. For similar reasons, it is not maximal either.
(2) $C_{2}=\{1,5,15\} . C_{2}$ is a chain. It is saturated as well. However, it is not maximal.
(3) $C_{3}=\{1,5,15,30\}$ is a maximal (and saturated) chain.
(1) $C_{4}=P$ is not a chain. Note that C_{4} is an interval. Thus, intervals need not be chains.
In a locally finite poset, a chain $x_{0}<x_{1}<\cdots<x_{n}$ is saturated if and only if x_{i} covers x_{i-1} for all $i \in[n]$.

Definition 15

The length of a finite chain C is denoted by $I(C)$ and is defined as $I(C):=|C|-1$.

Definition 16

The length (or rank) of a finite poset is $I(P):=\max \{I(C): C$ is a chain ofP $\}$.
The length of an interval $[x, y]$ is denoted by $I(x, y)$.

Definition 17

If every maximal chain of P has the length $n \in \mathbb{N} \cup\{0\}$, then we say that P is graded of rank n.

Before proving a result about graded posets, let us see the notion of something known as a rank function.

Definition 18

A rank function of a poset P is a function $\rho: P \rightarrow \mathbb{N} \cup\{0\}$ having the following properties:
(1) if x is minimal, then $\rho(x)=0$, and
(2) if y covers x, then $\rho(y)=\rho(x)+1$.

Note that saying "a rank function" instead of "the rank function" has a subtlety. Given an arbitrary poset P, it is not necessary that is has a rank function. For example, \mathbb{Z} has no rank function. Also, given a poset P, it may have more than one rank functions as well. As an example, the set of nonnegative real numbers has infinitely many rank functions!
Even a finite poset need not have a rank function. Example- $\{2,6,15,30\}$ regarded as a subposet of D_{30}.

Theorem 1

Every graded poset possesses a unique rank function.
It is important to observe that even if the poset is not finite, it could still be graded. For example, $(\mathbb{N},=)$ is graded of rank 0 .
Before we prove Theorem 1, let us see another theorem.

Theorem 2

If $x \leq y$, then $I(x, y)=\rho(y)-\rho(x)$.
Given an element x of a graded poset, the existence and uniqueness of a rank function lets us talk about the rank of x. We define rank of x to be $\rho(x)$, where ρ is the unique rank function.

Lemma 1

Every finite chain possesses a unique rank function.

Proof.

Assume $C=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a finite chain of length n such that $x_{0}<x_{1}<\cdots x_{n}$. Then, x_{0} is a minimal element of C, and for all $i \in[n]$, we have it that x_{i} covers x_{i-1}. Define $\rho: C \rightarrow \mathbb{N} \cup\{0\}$ by defining $\rho\left(x_{i}\right)=i$. Then, ρ satisfies the properties of a rank function. This shows the existence of a rank function.

Suppose ρ^{\prime} were another rank function of C different from ρ. It is forced that $\rho^{\prime}\left(x_{0}\right)=0$. Thus, for some $i \in[n], \rho\left(x_{i}\right) \neq \rho^{\prime}\left(x_{i}\right)$.
If $\rho\left(x_{i}\right)<\rho\left(x_{i}\right)^{\prime}$, then $\rho^{\prime}\left(x_{0}\right)=\rho^{\prime}\left(x_{1}\right)-1=\cdots=\rho^{\prime}\left(x_{i}\right)-i>i-i=0$, a contradiction.
Similarly, if $\rho\left(x_{i}\right)<\rho\left(x_{i}\right)^{\prime}$, we get that $\rho^{\prime}\left(x_{0}\right)<0$, a contradiction.

Assume P is a graded poset of rank n. Let $C=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be an arbitrary maximal chan of P such that $x_{0}<x_{1}<\cdots<x_{n}$. By Lemma 1, there exists a unique rank function ρ_{C} for C.
Let $C^{\prime}=\left\{x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ be any other maximal chain such that $x_{0}^{\prime}<x_{1}^{\prime}<\cdots<x_{n}^{\prime}$ and $C \cap C^{\prime} \neq \emptyset$. Let $\rho_{C^{\prime}}$ be the unique rank function for C^{\prime} and suppose that for some $x \in C \cap C^{\prime}, \rho_{C}(x) \neq \rho_{C^{\prime}}(x)$.
Then, there exist $i, j \in[n] \cup\{0\}$ such that $i \neq j$ and $x=x_{i}=x_{j}^{\prime}$. Without loss of generality, we can assume that $j>i$.
Then, $\left\{x_{0}^{\prime}, x_{1}, \ldots, x_{j}^{\prime}=x_{i}, \ldots, x_{n}\right\}$ is a chain of length $j+n-i>n$, which contradicts the assumption of the rank of P.
Thus, we have shown that given any chains, their rank functions agree on the common values, if any.
Since $P=\bigcup\{C \subset P: C$ is a maximal chain of $P\}$, we can define $\rho(x)=\rho_{C}(x)$ where C is any maximal chain containing x. This map is well defined by our above exercise and its uniqueness follows from the uniqueness of each ρ_{C}.

Assume P is a graded poset of of rank n with rank function ρ. Given $x \leq y$ in P , let $C=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a maximal chain of P containing x and y such that $x_{0}<x_{1}<\cdots<x_{n}$.
Then, for some $i, j \in[n] \cup\{0\}$ such that $i<j$, we have that $x_{i}=x$ and $x_{j}=y$. This forces $I(x, y)=j-i$. Else wise, we would get that $I(C) \neq n$.
But by Theorem 1, we know that $\rho(y)=j$ and $\rho(x)=i$.

Definition 19

If P is a finite graded poset of rank n such that for each $i \in[n] \cup\{0\}$, p_{i} is the number of elements of P of rank i, then the rank-generating function of P is the polynomial

$$
F(p, x):=\sum_{i=0}^{n} p_{i} x^{i}
$$

Most of the posets we saw so far were graded. Examples - $[n], B_{n}, D_{n}$, and Π_{n}.

Some examples

Poset P	Rank of $x \in P$	Rank of P	$F(P, x)$
$[n]$	$x-1$	$n-1$	$\sum_{i=0}^{n-1} x^{i}$
B_{n}	$\|x\|$	n	$\sum_{i=0}^{n}\binom{n}{i} x^{i}$
D_{n}	number of prime divisors of x	number of prime divisors of n	$F\left(B_{n}, x\right)$, if n is square free
Π_{n}	$n-\|x\|$	$n-1$	$\sum_{i=0}^{n-1} S(n, n-i) x^{i}$

Where $S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n}$ is a Stirling number of the second kind.

Antichains and ideals

Definition 20 (Antichain)

An antichain is a subset A of a poset P such that any two distinct elements of A are not comparable.

Definition 21 (Order ideal)

An order ideal of a poset P is a subset I of P such that if $x \in I$ and $y \leq x$, then $y \in I$.
When $|P|<\infty$, there is a one-to-one correspondence between antichains A of P and order ideals $/$ of P.
Given an antichain A, one can construct an order ideal I as follows:
$I=\{x \in P: x \leq y$ for some $y \in A\}$.
Similarly, given an order ideal I, one can construct an antichain A as follows:
$A=\{x \in I: x$ is a maximal element of $I\}$.

The set of all order ideals of P, ordered by inclusion, forms a poset which is denoted by $J(P)$. If I and A are related as in $(*)$, then we say that A generates I. If $A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then we write $I=\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle$ for the order ideal generated by A.

The order ideal $\langle x\rangle$ is the principal order ideal generated by x, denote Λ_{x}.

We shall now see some operations on posets that let us create new posets.

Definition 22 (Direct sum)

If $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are posets on disjoint sets, then the direct sum of P and Q is the poset $P+Q$ defined on $P \cup Q$ such that $x \leq y$ in $P+Q$ if either
(1) $x, y \in P$ and $x \leq_{P} y$, or
(2) $x, y \in Q$ and $x \leq_{Q} y$.

A poset that is not (isomorphic to) a disjoint union of two nonempty posets is said to be connected.
Examples -
(1) [5] is connected.
(2) The subposet $\{4,6\}$ of D_{12} is not connected. $\{4,6\} \cong\{4\}+\{6\}$.

The disjoint union of P with itself n times is denoted by $n P$.
An n-element antichain is isomorphic to $n[1]$.

Definition 23 (Ordinal sum)

If P and Q are disjoint sets as above, then the ordinal sum of the posets P and Q, denoted by $P \oplus Q$ is the poset defined on $P \cup Q$ such that $x \leq y$ in $P \oplus Q$ if
(1) $x, y \in P$ and $x \leq_{P} y$, or
(2) $x, y \in Q$ and $x \leq_{Q} y$, or
(3) $x \in P$ and $y \in Q$.

Hence, an n-element chain is isomorphic to $\underbrace{[1] \oplus[1] \oplus \cdots \oplus[1]}_{n \text { times }}$.
Posets that can be built up using disjoint union and ordinal sums from the poset [1] are called series-parallel posets.
.
This is the only poset (up to isomorphism) with four elements that is not series-parallel.

Definition 24

If $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are posets, then the direct product of P and Q is the poset
$P \times Q=\left(P \times Q, \leq_{P \times Q}\right)$ such that $x \leq_{P \times Q}$ y if $x \leq_{P} x^{\prime}$ and $y \leq_{Q} y^{\prime}$.
The direct product of P with itself n times is denoted by P^{n}.
To draw the Hasse diagram of $P \times Q$, (when P and Q are finite) we do the following:
(1) Draw the Hasse diagram of P.
(2) Replace every element $x \in P$ by a copy Q_{x} of Q.
(3) Connect corresponding elements of Q_{x} and Q_{y} if x and y are connected in the Hasse diagram of P.
It is clear from the definition that $P \times Q \cong Q \times P$. However, using the above procedure, the Hasse diagrams may look completely different.

Theorem 3

If P and Q are graded with rank-generating functions $F(P, x)$ and $F(Q, x)$, then $P \times Q$ is graded and $F(P \times Q, x)=F(P, x) F(Q, x)$.

Before proving this theorem, we shall first prove the following lemma:

Lemma 2

If both P and Q have finite lengths, then $I(P \times Q)=I(P)+I(Q)$.

Proof.

Assume P has length m and Q has length n. Given any arbitrary chains $C=\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{l}, y_{l}\right)\right\}$ of $P \times Q$ such that $\left(x_{0}, y_{0}\right)<_{p \times Q} \cdots<_{P \times Q}\left(x_{l}, y_{l}\right)$, it follows that $X=\left\{x_{0}, \ldots, x_{l}\right\}$ is a chain of P and $Y=\left\{y_{0}, y_{1}, \ldots, y_{l}\right\}$ is a chain of Q. Note that for each $i \in[/],\left(x_{i-1}, y_{i-1}\right)<p \times Q\left(x_{i}, y_{i}\right)$ implies that $x_{i-1}<p x_{i}$ or $y_{i-1}<Q y_{i}$. Since $I(P)=m$, we get that $x_{i-1}<x_{i}$ is true for at most m many elements in [$/$] and similarly $y_{i-1}<y_{i}$ is true for at most n many elements. Thus, we get that $I \leq m+n$.
Now, we actually produce a chain of length $m+n$. As P has length m, there exists a chain $C_{1}=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ of P such that $x_{0}<_{p} x_{1}<_{p} \cdots<_{p} x_{m}$. Similarly, there exists a chain $C_{2}=\left\{y_{0}, y_{1}, \ldots y_{m}\right\}$ of Q such that $y_{0}<_{Q} y_{1}<_{Q} \cdots<_{Q} y_{m}$. Then, $\mathcal{C}=\left\{\left(x_{0}, y_{0}\right),\left(x_{0}, y_{1}\right), \ldots\left(x_{0}, y_{n}\right),\left(x_{1}, y_{n}\right), \ldots\left(x_{m}, y_{n}\right)\right\}$ is a chain of $P \times Q$ of length $m+n$.

Assume that P and Q are graded of rank m and n, respectively. By the previous lemma, $P \times Q$ has rank $m+n$. Now we show that $P \times Q$ is indeed graded. Let $C=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{l}, y_{l}\right)\right\}$ be an arbitrary maximal chain of $P \times Q$ such that $\left(x_{0}, y_{0}\right)<p \times Q \cdots<p \times Q\left(x_{l}, y_{l}\right)$. If $I<m+n$, then there exists $i \in[/]$ such that $x_{i-1}<p x_{i}$ and $y_{i-1}<_{Q} y_{i}$. (Use an argument similar to that used in the proof of the previous lemma.)
But this implies that $C \cup\left\{\left(x_{i-1}, y_{i}\right)\right\}$ is a chain, contradicting the maximality of C. Thus, $I(C)=m+n$. As C was arbitrary, $P \times Q$ is graded of rank $m+n$.

Now, we shall show the relation of rank-generating functions that was stated before.

Proof of the theorem

Assume that the rank generating functions of P and Q are $\sum_{i=0}^{m} p_{i} x^{i}$ and $\sum_{i=0}^{n} q_{i} x^{i}$, respectively.
Let $x \in P$ have rank k and $y \in Q$ have rank I. We show that (x, y) has rank $k+I$. To see this, consider maximal chains $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{0}, y_{1}, \ldots, y_{n}\right\}$ of P and Q, respectively such that $x \in X$ and $y \in Y$ and $x_{0}<p x_{1}<p \cdots<_{p} x_{m}$ and $y_{0}<_{Q} y_{1}<_{Q}<\cdots y_{n}$. By Theorem 1, we have it that $x=x_{k}$ and $y=y_{l}$. The chain

$$
C=\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{0}\right), \ldots,\left(x_{k}, y_{l}\right), \ldots,\left(x_{k}, y_{n}\right), \ldots,\left(x_{m}, y_{n}\right)\right\}
$$

of $P \times Q$ such that

$$
\left\{\left(x_{0}, y_{0}\right)<_{P \times Q}\left(x_{k}, y_{0}\right)<_{P \times Q}\left(x_{k}, y_{l}\right)<_{P \times Q}\left(x_{k}, y_{n}\right),<_{P \times Q}\left(x_{m}, y_{n}\right)\right\}
$$

in $P \times Q$ has length $m+n$ and so it is maximal. It follows again, by Theorem 1 that (x, y) has rank $k+l$. Thus, the number of elements of $P \times Q$ of rank j is $\sum_{i=0}^{j} p_{i} q_{j-i}$, which is the coefficient of x^{j} in $F(P, x) F(Q, x)$.

Ordinal product

Definition 25

Ordinal product If $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are posets, then the direct product of P and Q is the poset $P \otimes Q=\left(P \times Q, \leq_{P \otimes Q}\right)$ such that $x \leq_{P \otimes Q} y$ if
(1) $x=x^{\prime}$ and $y \leq y^{\prime}$, or
(2) $x<x^{\prime}$.

We state the following theorem without proof:

Theorem 4

If P and Q are graded and Q has rank r, then

$$
F(P \otimes Q, x)=F\left(p, x^{r+1}\right) F(Q, x)
$$

In general, $P \otimes Q$ and $Q \otimes P$ don't have the same rank-generating function. Thus, they are not isomorphic.

Definition 26 (Dual poset)

Let P be a poset. We denote by P^{*} the poset defined on the same set as that of P such that $x \leq P^{*} y \Longleftrightarrow y \leq p x$.

If P and P^{*} are isomorphic, then P is said to be self-dual. There are eight posets (up to isomorphism) with 4 elements that are self-dual.

